top of page

76. CO-mediated Bicarbonate Conversion to Concentrated Formate in a CEM-based Electrolyzer

Xiong H.#, Wu D.#, Li H., Li A., Hu Q., Song S., Xu B.*, Lu Q.*, Journal of Energy Chemistry, 100, 605-611 (2024)​

74. Selective C–H Bond Activation in Propane with Molecular Oxygen over Cu(I)-ZSM-5 at Ambient Conditions

Su H.#, Liu Y.#, Tian H., Chen D., Shen Q., Chang X., Lu Q.*, Xu B.*, Journal of the American Chemical Society, 146(25), 17170–17179 (2024)

73. Urea Synthesis via Electrocatalytic Oxidative Coupling of CO with NH on Pt

Xiong H., Yu P., Chen K., Lu S., Hu Q., Cheng T.*, Xu B.*, Lu Q.*, Nature Catalysis, 7, 785-795 (2024)

 

72. Influence of CO Adsorption on the Structure of Electric Double Layer on Cu Surface

Hou J., Lu Q.*, Journal of Catalysis431, 115393 (2024)

71. Influence of Electric Double Layer Rigidity on CO Adsorption and Electroreduction Rate

Hou J., Xu B.*, and Lu Q.*, Nature Communications, 15, 1926 (2024)

 

70. New Mechanistic Insights into CO/CO Electroreduction to Acetate by Combining Computations and Experiments

Bai X., He M., Xu Y., Xu B., Lu Q., Wang J.*, and Ling C.*, ACS Catalysis, 14, 3171–3180 (2024)

 

69. Efficient Conversion of Propane in a Microchannel Reactor at Ambient Conditions

Li C.#, Zhang H.#, Liu W., Sheng L., Cheng M. J., Xu B., Luo G*, and Lu Q.*, Nature Communications, 15, 884 (2024)(#contributed equally to this work)

68. Understanding the Effect of Specific Adsorption on the Vibrational Stark Effect of Adsorbates on an Electrode Surface via Surface Enhanced Spectroscopy

Zhao K., Xiong H., Xiao Y., Su H., Wu D., Chang X., Lu Q.* and Xu B.*, Inorganic Chemistry Frontiers, 11, 756-758 (2024)

 

67. Mechanistic Implications of Low CO Coverage on Cu in the Electrochemical CO and CO Reduction Reactions

Chang X., Xiong H., Lu Q., and Xu B.*, JACS Au, 3(11), 2948–2963 (2023)

 

66. CO Binding Energy is an Incomplete Descriptor of Cu-Based Catalysts for the Electrochemical CO Reduction Reaction

Gao W., Xu Y., Xiong H., Chang X., Lu Q., and Xu B.*, Angewandte Chemie International Edition, 62(47), e202313798 (2023)

65. Action at a Distance: Organic Cation Induced Long Range Organization of Interfacial Water Enhances Hydrogen Evolution and Oxidation Kinetics

Zhao K., Yu H., Xiong H., Lu Q., Gao Y. and Xu B.*, Chemical Science, 14, 11076-11087 (2023)

64. Identification of CO As a Reactive Reagent for C–C Bond Formation via Copper-catalyzed Electrochemical Reduction

Lin W. Y., Chen Z. X., Xiong H., Li H. C., Ho Y. S., Hsieh C. T., Lu Q.*, and Cheng M. J.*, ACS Catalysis, 13(17), 11697−11710 (2023)

63. Activation of Light Alkanes at Room Temperature and Ambient Pressure

Zhang H.#, Li C.#, Liu W., Luo G., Goddard W. A., Cheng M. J., Xu B.*, and Lu Q.*, Nature Catalysis, 6666–675 (2023(#contributed equally to this work)

62. Benchmarking of Commercial Cu Catalysts in CO Electroreduction Using Gas-diffusion Type Microfluidic Flow Electrolyzer

Xiong H., Li J., Wu D., Xu B.*, and Lu Q.*, Chemical Communications, 59(37), 5615-5618 (2023)

61. Weak CO Binding Sites Induced by Cu–Ag Interfaces Promote CO Electroreduction to Multi-carbon Liquid Products

Li J.#, Xiong H.#, Liu X., Wu D., Su D., Xu B., and Lu Q.*, Nature Communications, 14, 698 (2023(#contributed equally to this work)

60. Correlating Experimentally Determined CO Adsorption Enthalpy with Electrochemical CO Reduction Performance on Cu Surfaces

Xiong H., Sun Q., Chen K., Xu Y., Chang X., Lu Q.*, and Xu B.*, Angewandte Chemie International Edition, 62(10), e202218447 (2023)

59. Correlating CO Coverage and CO Electroreduction on Cu via High-Pressure In Situ Spectroscopic and Reactivity Investigations

Hou J., Chang X., Li J., Xu B.*, and Lu Q.*, Journal of the American Chemical Society, 144(48), 22202-22211 (2022)

58. Origin and Effect of Surface Oxygen-containing Species on Electrochemical CO or CO Reduction Reactions

Chang X., He M., Lu Q., and Xu B.*, Science China Chemistry, 66, 96-106 (2022)

57. Intercepting Elusive Intermediates in Cu-Mediated CO Electrochemical Reduction with Alkyl Species

Li J., Li C., Hou J., Gao W., Chang X., Lu Q.*, and Xu B.*, Journal of the American Chemical Society, 144(44), 20495-20506 (2022)

56. Progress and Understanding of CO/CO Electroreduction in Flow Electrolyzers

Wu D., Jiao F.*, and Lu Q.*, ACS Catalysis, 12(20), 12993-13020 (2022)

55. Gaseous CO Coupling with N-Containing Intermediates for Key C–N Bond Formation during Urea Production from Coelectrolysis over Cu

Yang G. L., Hsieh C. T., Ho Y. S., Kuo T. C., Kwon Y., Lu Q., and Cheng M. J.*, ACS Catalysis, 12(18), 11494-11504 (2022)

54. Enhancing Hydrogen Oxidation and Evolution Kinetics by Tuning the Interfacial Hydrogen-Bonding Environment on Functionalized Platinum Surfaces

Zhao K., Chang X., Su H., Nie Y., Lu Q., and Xu B.*, Angewandte Chemie International Edition, 61(39), e202207197 (2022)

53. Selective Enhancement of Methane Formation in Electrochemical CO Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu

He M., Chang X., Chao T. H., Li C., Goddard W. A., Cheng M. J.*, Xu B.*, and Lu Q.*, ACS Catalysis, 12(10), 6036-6046 (2022)

52. Probing the Role of Surface Speciation of Tin Oxide and Tin Catalysts on CO Electroreduction Combining In Situ Raman Spectroscopy and Reactivity Investigations

He M., Xu B.*, and Lu Q.*, Chinese Journal of Catalysis, 43(6), 1473-1477 (2022)

51. C-C Coupling Is Unlikely to Be the Rate-Determining Step in the Formation of C₂₊ Products in the Copper-Catalyzed Electrochemical Reduction of CO

Chang X.#, Li J.#, Xiong H., Zhang H., Xu Y., Xiao H., Lu Q.*, and Xu B.*, Angewandte Chemie International Edition, 61(2), e202111167 (2022) (#contributed equally to this work)

50. Investigation of Electroreduction of Carbon Dioxide into Formate Based on Machine Learning

Liu W., Zhang J., Lu Q., and Zhang H.*, CIESC Journal, 72(12), 6262-6273 (2021)

49. Atomistic Insights into Cl⁻-Triggered Highly Selective Ethylene Electrochemical Oxidation to Epoxide on RuO: Unexpected Role of the In Situ Generated Intermediate to Achieve Active Site Isolation

Hong J. C.#, Kuo T. C.#, Yang G. L., Hsieh C. T., Shen C. T., Chao T. H., Lu Q.*, and Cheng M. J.*, ACS Catalysis, 11 (21), 13660−13669 (2021) (#contributed equally to this work)

48. Determining Intrinsic Stark Tuning Rates of Adsorbed CO on Copper Surfaces 

Chang X., Xiong H., Xu Y., Zhao Y., Lu Q.*, and Xu B.*, Catalysis Science & Technology, 11(20), 6825-6831 (2021)

 

47. Oxyhydroxide Species Enhances CO Electroreduction to CO on Ag via Coelectrolysis with O

Li C., Xiong H., He M., Xu B.*, and Lu Q.*, ACS Catalysis, 11 (19), 12029–12037 (2021

46. Machine Learning Investigation of Supplementary Adsorbate Influence on Copper for Enhanced Electrochemical CO Reduction Performance

Wu D.#, Zhang J.#, Cheng M. J., Lu Q.*, and Zhang H.*, The Journal of Physical Chemistry C, 125 (28), 15363–15372 (2021) (#contributed equally to this work)

45. Electrokinetic and In situ Spectroscopic Investigations of CO Electrochemical Reduction on Copper

Li J.#, Chang X.#, Zhang H., Malkani A. S., Cheng M., Xu, B.*, and Lu, Q.*, Nature Communications, 12, 3264 (2021(#contributed equally to this work)

44. Selective Activation of Propane by Intermediates Generated During Water Oxidation

Zhang H., Li C., Lu Q.*, Cheng M. J.*, and Goddard W. A.*, Journal of the American Chemical Society, 143 (10), 3967–3974 (2021)

43. First Principles Study of C-C Coupling Pathways for CO Electrochemical Reduction Catalyzed by Cu(110)

Kuo T., Chou, J., Shen M., Hong Z., Chao T., Lu Q.*, and Cheng M.*, The Journal of Physical Chemistry C, 125 (4), 2464–2476 (2021)

42. Evaluating Potential Catalytic Active Sites on Nitrogen-Doped Graphene for the Oxygen Reduction Reaction: An Approach Based on Constant-Electrode-Potential Density Functional Theory Calculation

Chen M., Chao T., Shen M., Lu Q.*, and Cheng M. J.*, The Journal of Physical Chemistry C, 124 (47), 25675–25685 (2020)

 

41. Understanding the Electric and Nonelectric Field Components of the Cation Effect on the Electrochemical CO Reduction Reaction

Malkani A. S., Li J., Oliveira N. J., He M., Chang X., Xu B.*, and Lu Q.*, Science Advances, 6 (45), eabd2569 (2020

40. Oxygen Induced Promotion of Electrochemical Reduction of CO₂ via Co-electrolysis

He M.#, Li C.#, Zhang H., Chang X., Chen J. G., Goddard W. A., Cheng M. J.*, Xu B.*, and Lu Q.*, Nature Communications, 11, 3844 (2020) (#contributed equally to this work)

 

39. Two-dimensional SnO₂ Nanosheets for Efficient Carbon Dioxide Electroreduction to Formate

Li J., Jiao J., Zhang H., Zhu P., Ma H., Chen C., Xiao H.*, and Lu Q.*, ACS Sustainable Chemistry & Engineering, 8 (12), 4975-4982 (2020)

38. Improving CO Electrochemical Reduction to CO Using Space Confinement between Gold or Silver Nanoparticles

Chang K., Jian X., Jeong H. M., Kwon Y., Lu Q.*, and Cheng M. J.*, The Journal of Physical Chemistry Letter, 11 (5), 1896-1902 (2020)

37. Impact of Forced Convection on Spectroscopic Observations of the Electrochemical CO Reduction Reaction

Malkani A. S., Li J., Anibal J., Lu Q.*, and Xu B.*, ACS Catalysis, 10 (2), 941-946 (2020)

36. Hydroxide is Not a Promoter of C2 Product Formation in Electrochemical Reduction of CO on Copper

Li J., Wu D., Malkani A. S., Chang X., Cheng M. J., Xu B.*, and Lu Q.*, Angewandte Chemie International Edition, 59 (11), 4464-4469 (2020) (featured as cover picture)

35. Application of Ceria in CO₂ Conversion Catalysis

Chang K., Zhang H., Cheng M.*, and Lu Q.*, ACS Catalysis, 10 (1), 613-631 (2020)

34. Tailoring the Electrochemical Production of H₂O₂: Strategies for the Rational Design of High-performance Electrocatalysts

Zhang J., Zhang H., Cheng M. J.*, and Lu Q.*, Small, 16 (15), 1902845 (2020)

33. Constant Electrode Potential Quantum Mechanical Study of CO₂ Electrochemical Reduction Catalyzed by N-Doped Graphene

Chang K., Zhang H., Chen J. G., Lu Q.*, and Cheng M. J.*, ACS Catalysis, 9 (9), 8197-8207 (2019)

32. Computational and Experimental Demonstrations of One-pot Tandem Catalysis for Electrochemical Carbon Dioxide Reduction to Methane

Zhang H.#, Chang X.#Chen J. G., Goddard W. A., Xu B.*, Cheng M. J.*, and Lu Q.*, Nature Communications, 10, 3340 (2019) (#contributed equally to this work)

31. Effectively Increased Efficiency for Electroreduction of Carbon Monoxide Using Supported Polycrystalline Copper Powder Electrocatalysts

Li J.#, Chang K.#, Zhang H., He M., Goddard W. A., Chen J. G., Cheng M. J., and Lu Q.*, ACS Catalysis, 9 (6), 4709-4718 (2019(#contributed equally to this work)

 

30. Copper Atom-pair Catalyst Anchored on Alloy Nanowires for Selective and Efficient Electrochemical Reduction of CO₂

Jiao J.#, Lin R.#, Liu S.#, Cheong W.-C.#, Zhang C., Chen Z., Pan Y., Tang J., Wu K., Hung S.-F., Chen H. M., Zheng L., Lu Q., Yang X., Xu B., Xiao H.*, Li J., Wang D., Peng Q., Chen C.* and Li Y., Nature Chemistry, 11, 222-228 (2019(#contributed equally to this work)

29. CO Electroreduction: Current Development and Understanding of Cu-Based Catalyst

Zhang H.#, Li J.#, Cheng M. J.*, and Lu Q.*, ACS Catalysis, 9 (1), 49-65 (2019(#contributed equally to this work)

 

28. High Performance Carbon Dioxide Electrocatalytic Reduction by Easily-Fabricated Large Scale Silver Nanowire Arrays

Luan C., Shao Y.*, Lu Q.*, Gao S., Huang K., Wu H.*, and Yao K., ACS Applied Materials & Interfaces, 10 (21), 17950-17956 (2018)

27. A Cu-Ni Bimetallic Cathode with Nanostructured Copper Array for Enhanced Hydrodechlorination of Trichloroethylene (TCE)

Liu B., Zhang H., Lu Q., Li G.*, and Zhang F.*, Science of the Total Environment, 635, 1417-1425 (2018)

26. Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability

Pan Y.#, Lin R.#, Chen Y.#, Liu S., Zhu W., Cao X., Chen W., Wu K., Cheong W., Wang Y., Zheng L., Lou J., Lin Y., Liu Y., Liu, C., Li J., Lu Q., Chen X., Wang D., Peng Q., Chen C.*, and Li Y., Journal of the American Chemical Society, 140 (12), 4218-4221 (2018(#contributed equally to this work)

25. The Importance of Grand-Canonical Quantum Mechanical Methods to Describe the Effect of Electrode Potential on the Stability of Intermediates Involved in both Electrochemical CO₂ Reduction and Hydrogen Evolution

Zhang H., Goddard W. A., Lu Q.*, and Cheng M. J.*, Physical Chemistry Chemical Physics, 20 (4), 2549-2557 (2018)

24. Grand Canonical Quantum Mechanical Study of the Effect of the Electrode Potential on N-Heterocyclic Carbene Adsorption on Au Surfaces

Chang K., Chen J. G., Lu Q.*, and Cheng M. J.*, The Journal of Physical Chemistry C, 121 (44), 24618-24625 (2017)

23. Quantum Mechanical Study of N-Heterocyclic Carbene Adsorption on Au Surfaces

Chang K., Chen J. G., Lu Q.*, and Cheng M. J.*, The Journal of Physical Chemistry A, 121 (13), 2674-2682 (2017)

22. Electrochemical CO₂ Reduction: Electrocatalyst, Reaction mechanism, and Process Engineering

Lu Q., and Jiao F.*, Nano Energy, 29, 439-456 (2016)

Prior to joining Tsinghua

21. Nanoporous Cu-Al-Co Alloys for Selective Furfural Hydrodeoxygenation to 2-methylfuran

Hutchings S. G., Luc W., Lu Q., Zhou Y., Vlachos D. G., and Jiao F.*, Industrial & Engineering Chemistry Research, 56 (14), 3866–3872 (2017)

20. The Central Role of Bicarbonate in the Electrochemical Reduction of CO₂ on Gold

Dunwell D.#, Lu Q.#, Heyes J. M., Rosen J., Chen J. G., Yan Y.*, Jiao F.*, and Xu B.*, Journal of the American Chemical Society, 139 (10), 3774–3783 (2017) (#contributed equally to this work)

19. Ordered Mesoporous Metal Carbides with Enhanced Anisole Hydrodeoxygenation Selectivity

Lu Q.#, Chen C.-J.#, Luc W. W., Chen J. G., Bhan A.*, and Jiao F.*, ACS Catalysis, 6 (6), 3506-3514 (2016) (#contributed equally to this work)

 

18. Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO₂ Reduction

Rosen J., Hutchings G. S., Lu Q., Forest R. V., Moore A., and Jiao F.*, ACS Catalysis, 5 (8), 4586-4591 (2015)

 

17. Mechanistic Insights into the Electrochemical Reduction of CO₂ to CO on Nanostructured Ag Surfaces

Rosen J., Hutchings G. S., Lu Q., Rivera S., Zhou Y., Vlachos D. G., and Jiao F.*, ACS Catalysis, 5 (7), 4293-4299 (2015)

 

16. Highly Porous Non-precious Bimetallic Electrocatalysts for Efficient Hydrogen Evolution

Lu Q., Hutchings G. S., Yu W., Zhou Y., Forest R.V., Tao R., Rosen J., Yonemoto B. T., Cao Z., Zheng H., Xiao J. Q., Jiao F.*, and Chen J. G.*, Nature Communications, 6, 6567 (2015)

 

15. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

Zhou Y.#, Lu Q.#, Zhuang Z., Hutchings G. S., Kattel S., Yan Y., Chen J. G.*, Xiao J. Q.*, and Jiao F.*, Advanced Energy Materials, 5, 1500149 (2015) (#contributed equally to this work)

 

14. Effect of Pretreatment Atmosphere on the Particle Size and Oxygen Reduction Activity of Low-loading Platinum Impregnated Titanium Carbide Powder Electrocatalysts

Yang L., Kimmel Y. C., Lu Q., and Chen J. G.*, Journal of Power Sources, 287, 196-202 (2015)

 

13. Nanostructured Metallic Electrocatalysts for CO₂ Reduction

Lu Q., Rosen J., and Jiao F.*, ChemCatChem, 7 (1), 38-47 (2015)


12. A Highly Selective and Efficient Electrocatalyst for Carbon Dioxide Reduction

Lu Q.#, Rosen J.#, Zhou Y., Hutchings G. S., Kimmel Y. C., Chen J. G., and Jiao F.*, Nature Communications, 5, 3242 (2014) (Featured in Science, 349, 1158 (2015); Highlighted by Science Daily, EurekAlert!, R&D, etc.) (#contributed equally to this work)


11. Nanostructured Flexible Mg-modified LiMnPO4 Matrix as High-rate Cathode Materials for Li-ion Batteries

Lu Q., Hutchings G. S., Zhou Y., Xin, H. L., Zheng H., and Jiao F.*, Journal of Material Chemistry A, 2 (18), 6368-6373 (2014) (Most Accessed Article for 2014 in JMCA)


10. Synthesis, Structural Characterization, and Electrochemical Performance of Nanocasted Mesoporous Cu-/Fe-based Oxides

Jiao F.*, Hoang Y., Hutchings G. S. Yonemoto B. T., Lu Q., and Kleitz F.*, Journal of Material Chemistry A, 2 (9), 3065-3071 (2014)


9. Nanostructured Electrodes for High-performance Pseudocapacitors

Lu Q., Chen J. G., and Xiao J. Q.*, Angewandte Chemie International Edition, 52 (7), 1882–1889 (2013)


8. Synthesis and Electrochemistry of Nanocrystalline M-TiO (M = Mn, Fe, Co, Ni, Cu) Anatase

Hutchings G. S., Lu Q., and Jiao F.*, Journal of The Electrochemical Society, 160 (3), A511-A515 (2013)


7. Ordered Mesoporous Nickel Cobaltite Spinel with Ultra-high Supercapacitance

Lu Q., Chen Y., Li W., Chen J. G., Xiao J. Q., and Jiao F.*, Journal of Material Chemistry A, 1 (6), 2331-2336 (2013)


6. Robust and Tunable One-way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration

Shen. J., Liu S., Kou X., Fan X., Lu Q., Zhang H., and Xiao J. Q.*, Plasmonics, 7 (2), 287-291 (2012)


5. Supercapacitor Electrodes with High-energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposite

Lu Q., Lattanzi M. W., Chen Y., Kou X., Li W., Fan X., Unruh K. M., Chen J. G., and Xiao J. Q.*, Angewandte Chemie International Edition, 50 (30), 6847–6850 (2011) (Cover article; Highlighted in MaterialViews, ChemistryViews, PhysOrg, etc.)


4. Memory Effect in Magnetic Nanowire Arrays

Kou X., Fan X., Dumas R. K., Lu Q., Zhang Y., Zhu H., Zhang X., Liu K., and Xiao J. Q.*, Advanced Materials, 23 (11), 1393–1397 (2011)


3. Damping Dependence in Microwave Assisted Magnetization Reversal

Chen Y., Fan X., Lu Q., and Xiao J. Q.*, Journal of Applied Physics, 110 (5), 053905 (2011)


2. Fabrication, Formation Mechanism, and Magnetic Properties of Metal Oxide Nanotubes via Electrospinning and Thermal Treatment

Chen X., Unruh K. M., Ni C., Ali B., Sun Z., Lu Q., Deitzel J., and Xiao J. Q.*, Journal of Physical Chemistry C, 115 (2), 373-378 (2011)


1. Differentiation of Bulk and Surface Contribution to Supercapacitance in Amorphous and Crystalline NiO

Lu Q., Mellinger Z. J., Wang W., Li W., Chen Y. Chen J. G., and Xiao J. Q.*, ChemSusChem, 3 (12), 1267-1370 (2010)

bottom of page